Search results for " 53C44"

showing 3 items of 3 documents

Translating Solitons Over Cartan-Hadamard Manifolds

2020

We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan-Hadamard manifolds. We show that the asymptotic behaviour of entire solitons depends heavily on the curvature of the manifold, and that there exist also bounded solutions if the curvature goes to minus infinity fast enough. Moreover, it is even possible to solve the asymptotic Dirichlet problem under certain conditions.

Mathematics - Differential GeometryTranslating graphsmean curvature equationTranslating solitonsRiemannin monistotdifferentiaaligeometriaDifferential Geometry (math.DG)FOS: Mathematics111 MathematicsHadamard manifoldGeometry and TopologyMathematics::Differential Geometrymonistottranslating graphsCartan-Hadamard manifold53C21 53C44
researchProduct

Evolution by mean curvature flow of Lagrangian spherical surfaces in complex Euclidean plane

2016

We describe the evolution under the mean curvature flow of embedded Lagrangian spherical surfaces in the complex Euclidean plane $\mathbb{C}^2$. In particular, we answer the Question 4.7 addressed in [Ne10b] by A. Neves about finding out a condition on a starting Lagrangian torus in $\mathbb{C}^2$ such that the corresponding mean curvature flow becomes extinct at finite time and converges after rescaling to the Clifford torus.

Mathematics - Differential GeometryMean curvature flowApplied Mathematics010102 general mathematicsMathematical analysisTorusClifford torus01 natural sciencessymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesEuclidean geometrysymbolsFOS: MathematicsPrimary 53C44 53C40 Secondary 53D12010307 mathematical physics0101 mathematicsFinite timeMathematics::Symplectic GeometryAnalysisLagrangianMathematics
researchProduct

Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow

2020

We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with respect to the Hausdorff distance. This result is more general than the previous quantifications of the Alexandrov theorem, and using it we are able to show that in R2 and R3 a weak solution of the volume preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow, obtained via the minimizing movements scheme. peerReviewed

Mathematics - Differential Geometrymean curvature flowMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: Mathematicsminimizing movements35J93 53C44 53C45constant mean curvaturelarge time behaviorAnalysis of PDEs (math.AP)
researchProduct